Surface chemistry models for GaAs epitaxial growth and hydride cracking using reacting flow simulations

نویسندگان

چکیده

Hydride Vapor Phase Epitaxy (HVPE) is a promising technology that can aid in the cost reduction of III-V materials and devices manufacturing, particularly high-efficiency solar cells for space terrestrial applications. However, recent demonstrations ultra fast growth rates ($\sim$ 500 $\mu$m/h) via uncracked hydrides are not well described by present models growth. Therefore, it necessary to understand kinetics process its coupling with transport phenomena, so as enable uniform epitaxial In this work, we derive kinetic model using experimental data integrate into computational fluid dynamics simulation an HVPE reactor. We also modify existing hydride cracking validate against numerical simulations data. show developed improved able reproduce measurements \ce{GaAs} system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An integral equation method for epitaxial step-flow growth simulations

In this paper, we describe an integral equation approach for simulating diffusion problems with moving interfaces. The solutions are represented as moving layer potentials where the unknowns are only defined on the interfaces. The resulting integro-differential equation (IDE) system is solved using spectral deferred correction (SDC) techniques developed for general differential algebraic equati...

متن کامل

Numerical Methods for Reacting Gas Flow Simulations

In this study, various numerical schemes for transient simulations of 2D laminar reacting gas flows, as typically found in chemical vapor deposition reactors, are proposed and compared. These systems are generally modeled by means of many stiffly coupled elementary gas phase reactions between a large number of reactants and intermediate species. The purpose of this study is to develop robust an...

متن کامل

Hydride Vapor Phase Epitaxial Growth of Thick GaN Layers with Improved Surface Flatness

Thick GaN layers have been grown by hydride vapor phase epitaxy (HVPE) on different GaN templates grown by metalorganic vapor phase epitaxy. Crack formation could be reduced by using a hydrogen/nitrogen carrier gas mixture. By carefully optimizing the growth conditions in the final stage of the process, excellent surface morphologies could be obtained at still acceptably high growth rates. Up t...

متن کامل

preparation and characterization of new co-fe and fe-mn nano catalysts using resol phenolic resin and response surface methodology study for fischer-tropsch synthesis

کاتالیزورهای co-fe-resol/sio2و fe-mn-resol/sio2 با استفاده از روش ساده و ارزان قیمت همرسوبی تهیه شدند. از رزین پلیمری resol در فرآیند تهیه کاتالیزور استفاده شد.

Passivation of GaAs surface by ultrathin epitaxial GaN layer

Ultrathin gallium nitride passivation layers grown in situ on near-surface InxGa1 xAs=GaAs quantum wells using metalorganic vapour-phase epitaxy (MOVPE) with dimethylhydrazine as nitrogen source are reported. Nitridation of GaAs using DMHy during the post-growth cool-down is also studied. The effect of passivation on the surface recombination rate of quantum well (QW) structures is characterize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Physics

سال: 2021

ISSN: ['1089-7550', '0021-8979', '1520-8850']

DOI: https://doi.org/10.1063/5.0061222